Malaysian Journal of Mathematical Sciences 8(S): 163-172 (2014) Special Issue: International Conference on Mathematical Sciences and Statistics 2013 (ICMSS2013)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Integral Operators Preserving Univalence

Oqlah Al-Refai

Department of Mathematics, Faculty of Science and Information Technology, University of Zarqa, Jordan

E-mail: oso_alrefai@yahoo.com

ABSTRACT

We introduce two new integral operators $F_{\alpha,\beta}$ and $H_{\alpha,\beta,\gamma}$ acting on the class of normalized analytic functions \mathcal{A} , where α,β and γ are complex parameters. Indeed, we derive sufficient conditions on the parameters α,β and γ to obtain that $F_{\alpha,\beta}(g)$ and $H_{\alpha,\beta,\gamma}(g)$ are univalent functions in the open unit disk \mathbb{U} , whenever g is univalent in \mathbb{U} .

Keywords: Univalent functions, univalence criteria, integral operators, preserving univalence.

1. INTRODUCTION AND PRELIMINARY

Let \mathcal{A} be the class of functions analytic in the open unit disk $\mathbb{U} := \{z : |z| < 1\}$ and have the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in \mathbb{U}).$$
⁽¹⁾

Denote by S the subclass of A consisting of functions univalent (one-to-one) in U. Ozaki and Nunokawa (1972) proved, for $g \in A$ with $g(z) \neq 0$ in 0 < |z| < 1, that the condition

$$\left|\frac{z^2 g'(z)}{g^2(z)} - 1\right| \le 1, \quad (z \in \mathbb{U})$$

$$\tag{2}$$

is sufficient for g to be in the class S.

Let us introduce and consider the following integral operators defined on \mathcal{A}

by

$$F_{\alpha,\beta}(g)(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{(\alpha-1)g(u)}{\alpha u - g(u)}\right)^{\beta-1} \mathrm{d}u\right]^{1/\beta} \tag{3}$$

and

$$H_{\alpha,\beta,\gamma}(g)(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{\alpha u - g(u)}{(\alpha-1)g(u)}\right)^{1/\gamma} \mathrm{d}u\right]^{1/\beta},\tag{4}$$

where $g \in \mathcal{A}$ with $g(z) \neq 0$ in 0 < |z| < 1 and α, β, γ are certain complex numbers. In some occasions during the study of $H_{\alpha,\beta,\gamma}(g)$, the parameter γ cannot be chosen such that $\gamma = 1/(1-\beta)$ with $\beta \in \mathbb{R}$. We treat this case by considering the function $F_{\alpha,\beta}(g)$ independently with $H_{\alpha,\beta,\gamma}(g)$, for $\beta \in \mathbb{R}$ or \mathbb{C} .

Note that, for $f \in \mathcal{A}$:

(i) If we substitute $g(u) = \alpha u f(u) / [(\alpha - 1)u + f(u)]$ in (3) where $f(u) \neq 0$ in 0 < |u| < 1, then $F_{\alpha,\beta}(g)$ becomes

$$G_{\beta}(f)(z) = \left[\beta \int_{0}^{z} [f(u)]^{\beta-1} du\right]^{\frac{1}{\beta}}.$$
 (5)

(ii) If we substitute $g(u) = \alpha u f'(u) / [f'(u) + \alpha - 1]$ in (3), where $f'(u) \neq 0$ in 0 < |u| < 1, then $F_{\alpha,\beta}(g)$ becomes

$$I_{\beta}(f)(z) = \left[\beta \int_{0}^{z} \left[uf'(u)\right]^{\beta-1} du\right]^{\frac{1}{\beta}}.$$
 (6)

(iii) If we substitute $g(u) = \alpha u^2 e^{f(u)} / [\alpha - 1 + u e^{f(u)}]$ in (3), then $F_{\alpha,\beta}(g)$ becomes

$$T_{\beta}(f)(z) = \left[\beta \int_{0}^{z} \left[u^{2} e^{f(u)}\right]^{\beta-1} du\right]^{\frac{1}{\beta}}.$$
 (7)

(iv) If we substitute $g(u) = \alpha u^2 / [(\alpha - 1)f(u) + u]$ in (4), then $H_{\alpha,\beta,\gamma}(g)$ becomes

$$Q_{\beta,\gamma}(f)(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{f(u)}{u}\right)^{\frac{1}{\gamma}} \mathrm{d}u\right]^{\frac{1}{\beta}}.$$
(8)

(v) If we substitute $g(u) = \alpha u^2 / [(\alpha - 1)f(u) + u]$, $\beta = 1$ and $\delta = 1/\gamma$ 164 *Malaysian Journal of Mathematical Sciences* Integral Operators Preserving Univalence

in (4), then $H_{\alpha,\beta,\gamma}(g)$ becomes

$$W_{\delta}(f)(z) = \int_0^z \left(\frac{f(u)}{u}\right)^{\delta} du.$$
(9)

For the functions in \mathcal{A} which are satisfying (2) and more general for the functions of \mathcal{S} , the problem of preserving univalence under the above integral operators (i-v) has been studied by many authors including Pescar (2003, 2005, 2006, 2006A), Breez and Breez (2003, 2004) and Kim and Merkes (1972).

In this article, we study the univalence of $F_{\alpha,\beta}(g)$ and $H_{\alpha,\beta,\gamma}(g)$ for the functions g of the general class S. Namely, we derive sufficient conditions on the parameters α , β and γ to obtain that $F_{\alpha,\beta}(g)$ and $H_{\alpha,\beta,\gamma}(g)$ are members of S, whenever $g \in S$.

To prove our main results, we need the following theorem:

Theorem 1.1. 1(Pascu (1987)). Let $\gamma \in \mathbb{C}$, $Re\gamma > 0$ and $f \in \mathcal{A}$. If

$$\frac{1-|z|^{2\operatorname{Re}\gamma}}{\operatorname{Re}\gamma}\left|\frac{zf''(z)}{f'(z)}\right| \le 1,$$

for all $z \in \mathbb{U}$, then for all $\beta \in \mathbb{C}$, $\operatorname{Re}\beta \geq \operatorname{Re}\gamma$, the function

$$G_{\beta}(z) = \left[\beta \int_0^z t^{\beta-1} f'(t) \, \mathrm{d}t\right]^{1/\beta}$$

is univalent in U.

2. MAIN RESULTS

Let us prove the following theorem:

Theorem 2.1. 2Let $g \in S$ with $g(z) \neq 0$ for 0 < |z| < 1. If $\alpha \in \mathbb{C}$ with $0 < |\alpha| < 1/4$ and

$$|1 - \beta| \le \frac{1 - 4|\alpha|}{16|\alpha|} \operatorname{Re}\beta, \quad \text{for } \operatorname{Re}\beta \in (0, 1)$$
(10)

or

Malaysian Journal of Mathematical Sciences

$$|1 - \beta| \le \frac{1 - 4|\alpha|}{16|\alpha|}, \quad \text{for } \operatorname{Re}\beta \in [1, \infty), \tag{11}$$

1

then the function $F_{\alpha,\beta}(g)$ defined by (3) belongs to S.

Proof. In view of (3), the function $F_{\alpha,\beta}(g)$ can be rewritten as

$$F_{\alpha,\beta}(g)(z) = \left[\beta \left(\frac{\alpha}{\alpha-1}\right)^{1-\beta} \int_0^z u^{\beta-1} \left(\frac{u}{g(u)} - \frac{1}{\alpha}\right)^{1-\beta} du\right]^{\overline{\beta}}.$$
 (12)

Let us consider the function

$$f(z) = \left(\frac{\alpha}{\alpha - 1}\right)^{1 - \beta} \int_0^z \left(\frac{u}{g(u)} - \frac{1}{\alpha}\right)^{1 - \beta} du.$$
(13)

We can choose regular branch of the function z/g(z) to be equal to 1 at the origin. Hence the function f is regular in \mathbb{U} and f(0) = 1 - f'(0) = 0, which means $f \in \mathcal{A}$. A simple computation shows that

$$F_{\alpha,\beta}^{\beta-1}(g)(z) \cdot F'_{\alpha,\beta}(g)(z) = z^{\beta-1} f'(z).$$
(14)

Therefore, $F_{\alpha,\beta}(g)(0) = 1 - F'_{\alpha,\beta}(g)(0) = 0$ and hence $F_{\alpha,\beta}(g) \in \mathcal{A}$. Because $g \in S$, we have

$$\left|\frac{zg'(z)}{g(z)}\right| \le \frac{1+|z|}{1-|z|}$$
(15)

and

$$|g(z)| \ge \frac{|z|}{(1+|z|)^2} \tag{16}$$

for all $z \in \mathbb{U}$. Also, by computations, we get

$$f'(z) = \left(\frac{\alpha}{\alpha - 1}\right)^{1 - \beta} \left(\frac{z}{g(z)} - \frac{1}{\alpha}\right)^{1 - \beta},$$
$$f''(z) = (1 - \beta) \left(\frac{\alpha}{\alpha - 1}\right)^{1 - \beta} \left(\frac{z}{g(z)} - \frac{1}{\alpha}\right)^{-\beta} \left(\frac{g(z) - zg'(z)}{g^2(z)}\right)$$

and

Malaysian Journal of Mathematical Sciences

Integral Operators Preserving Univalence

$$\left|\frac{zf''(z)}{f'(z)}\right| = \left|1 - \beta\right| \left|\frac{\alpha z}{\alpha z - g(z)}\right| \left|1 - \frac{zg'(z)}{g(z)}\right|,\tag{17}$$

for all $z \in \mathbb{U}$. From (16) and (15), we have for 0 < r = |z| < 1 and $0 < |\alpha| < 1/4$,

$$\left|\frac{\alpha z}{g(z) - \alpha z}\right| \le \frac{|\alpha| r}{|g(z)| - |\alpha| r} \le \frac{|\alpha|}{\frac{1}{(1+r)^2} - |\alpha|} \le \frac{4|\alpha|}{1 - 4|\alpha|}$$
(18)

and

$$\left|1 - \frac{zg'(z)}{g(z)}\right| \le 1 + \left|\frac{zg'(z)}{g(z)}\right| \le \frac{2}{1-r}.$$
(19)

Next, for $0 < Re\beta < 1$, the function

$$t: (0,1) \to \mathbb{R}, \quad t(x) = 1 - r^{2x}, \quad (0 < r < 1)$$

is an increasing function and for $|z| = r, z \in U$, we obtain

$$1 - |z|^{2\text{Re}\beta} \le 1 - r^2,\tag{20}$$

for all $z \in \mathbb{U}$. Hence, from (17), (18), (19) and (20), we obtain

$$\frac{1-|z|^{2\operatorname{Re}\beta}}{\operatorname{Re}\beta}\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{16|\alpha||1-\beta|}{(1-4|\alpha|)\operatorname{Re}\beta}.$$
(21)

Combining (21) with condition (10), we get

$$\frac{1-|z|^{2\operatorname{Re}\beta}}{\operatorname{Re}\beta} \left| \frac{zf^{\prime\prime}(z)}{f^{\prime}(z)} \right| \le 1, \quad \operatorname{Re}\beta \in (0,1),$$
(22)

for all $z \in \mathbb{U}$. Now, for $\operatorname{Re}\beta \geq 1$, we observe that the function

$$s: [1, \infty) \to \mathbb{R}, \quad s(x) = \frac{1 - r^{2x}}{x}, \quad (0 < r < 1)$$

is a decreasing function and for $r = |z|, z \in \mathbb{U}$, we have

$$\frac{1-|z|^{2\operatorname{Re}\beta}}{\operatorname{Re}\beta} \le 1-r^2,\tag{23}$$

167

for all $z \in \mathbb{U}$. Hence, from (17), (18), (19) and (23), we get

Malaysian Journal of Mathematical Sciences

$$\frac{1-|z|^{2\operatorname{Re}\beta}}{\operatorname{Re}\beta} \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{16|\alpha||1-\beta|}{1-4|\alpha|}.$$
(24)

Combining (24) with condition (11), we arrive at

$$\frac{1-|z|^{2\operatorname{Re}\beta}}{\operatorname{Re}\beta} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad \operatorname{Re}\beta \in [1,\infty),$$
(25)

for all $z \in \mathbb{U}$. Since

$$f'(z) = \left(\frac{\alpha z - g(z)}{(\alpha - 1)g(z)}\right)^{1-\beta}$$

Then, applying (22) and (25) to Theorem 1.1 for $\beta = \gamma$, we establish that the function $F_{\alpha,\beta}(g)$ defined by (3) belongs to S.

Assuming that β is real in Theorem 2.1 gives what follows:

Corollary 2.2. 3Let $g \in S$ with $g(z) \neq 0$ for 0 < |z| < 1. If $\alpha \in \mathbb{C}$ with $0 < |\alpha| < 1/4$ and

$$\beta \in \left[\frac{16|\alpha|}{12|\alpha|+1}, \frac{12|\alpha|+1}{16|\alpha|}\right],\,$$

then the function $F_{\alpha,\beta}(g)$ defined by (3) belongs to S.

Proof. For $\beta \in (0,1)$, condition (10) yields

$$1 - \beta \le \frac{1 - 4|\alpha|}{16|\alpha|}\beta$$

and hence the domain of β is reduced to

$$\beta \in \left[\frac{16|\alpha|}{12|\alpha|+1}, 1\right).$$

For $\beta \in [1, \infty)$, condition (11) yields

$$\beta - 1 \le \frac{1 - 4|\alpha|}{16|\alpha|}$$

Malaysian Journal of Mathematical Sciences

and hence the domain of β is reduced to

$$\beta \in \left[1, \frac{12|\alpha|+1}{16|\alpha|}\right].$$

Thus the result follows by applying Theorem 2.1 for the choice β is real.

The univalence of $H_{\alpha,\beta,\gamma}(g)$ is studied in the following theorem:

Theorem 2.3.4 Let $g \in S$ with $g(z) \neq 0$ when 0 < |z| < 1. For $\alpha \in \mathbb{C}$ with $0 < |\alpha| < 1/4$ and $Re\beta \ge Re\gamma$, if

$$|\gamma| \ge \frac{16|\alpha|}{\operatorname{Re}\gamma(1-4|\alpha|)}, \text{ when } \operatorname{Re}\gamma \in (0,1)$$
 (26)

or

$$|\gamma| \ge \frac{16|\alpha|}{1-4|\alpha|}$$
, when $\operatorname{Re}\gamma \in [1,\infty)$, (27)

then the function $H_{\alpha,\beta,\gamma}(g)$ defined by (4) belongs to \mathcal{S} .

Proof. Consider the function

$$f(z) = (\alpha - 1)^{-\frac{1}{\gamma}} \int_0^z \left(\frac{\alpha u}{g(u)} - 1\right)^{\frac{1}{\gamma}} du.$$
 (28)

The function $f \in \mathcal{A}$ because as $g \in S$, we can choose a regular branch of the function z/g(z) to be equal to 1 at the origin. Then a simple computation shows that

$$H^{\beta-1}_{\alpha,\beta,\gamma}(g)(z) \cdot H'_{\alpha,\beta,\gamma}(g)(z) = z^{\beta-1}f'(z).$$
⁽²⁹⁾

Therefore, $H_{\alpha,\beta,\gamma}(g)(0) = 1 - H'_{\alpha,\beta,\gamma}(g)(0) = 0$ and so $H_{\alpha,\beta,\gamma}(g) \in \mathcal{A}$. Also we have

$$f'(z) = (\alpha - 1)^{-\frac{1}{\gamma}} \left(\frac{\alpha z}{g(z)} - 1\right)^{\frac{1}{\gamma}},$$

$$f''(z) = (\alpha - 1)^{-\frac{1}{\gamma}} \left(\frac{\alpha z}{g(z)} - 1\right)^{\frac{1}{\gamma} - 1} \left(\frac{\alpha g(z) - \alpha z g'(z)}{\gamma g^2(z)}\right).$$

Malaysian Journal of Mathematical Sciences

This yields

$$\left|\frac{zf''(z)}{f'(z)}\right| \leq \frac{1}{|\gamma|} \left|\frac{\alpha z}{\alpha z - g(z)}\right| \left|1 - \frac{zg'(z)}{g(z)}\right| \tag{30}$$

for all $z \in \mathbb{U}$. Combining (30) with (18) and (19), we obtain for 0 < r = |z| < 1 and $0 < |\alpha| < 1/4$,

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{1}{|\gamma|} \cdot \frac{4|\alpha|}{1-4|\alpha|} \cdot \frac{2}{1-r}.$$
(31)

If $0 < Re\gamma < 1$, then from (20) and (31), we have $1 - |z|^{2\text{Re}\gamma} \le 1 - |z|^2$ and

$$\frac{1-|z|^{2\operatorname{Re}\gamma}}{\operatorname{Re}\gamma}\left|\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right| \le \frac{1}{|\gamma|\operatorname{Re}\gamma} \cdot \frac{16|\alpha|}{1-4|\alpha|}.$$
(32)

Combining (32) with condition (26), we obtain

$$\frac{1-|z|^{2\operatorname{Re}\gamma}}{\operatorname{Re}\gamma}\left|\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right| \le 1, \quad \operatorname{Re}\gamma \in (0,1), \tag{33}$$

for all $z \in \mathbb{U}$. If $\operatorname{Re}_{\gamma} \ge 1$, then from (23) and (31), we have $1 - |z|^{2\operatorname{Re}_{\gamma}} \le (1 - |z|^2)\operatorname{Re}_{\gamma}$ and

$$\frac{1-|z|^{2\operatorname{Re}\gamma}}{\operatorname{Re}\gamma}\left|\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right| \le \frac{1}{|\gamma|} \cdot \frac{16|\alpha|}{1-4|\alpha|'}$$
(34)

for all $z \in \mathbb{U}$. Combining (34) with condition (27), we obtain

$$\frac{1-|z|^{2\operatorname{Re}\gamma}}{\operatorname{Re}\gamma}\left|\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right| \le 1, \quad \operatorname{Re}\gamma \in [1,\infty), \tag{35}$$

for all $z \in \mathbb{U}$. Since

$$f'(z) = \left(\frac{\alpha z - g(z)}{(\alpha - 1)g(z)}\right)^{\frac{1}{\gamma}}.$$

Then, applying (33) and (35) to Theorem 1.1 with $\text{Re}\beta \ge \text{Re}\gamma$, we establish that the function $H_{\alpha,\beta,\gamma}(g)$ defined by (4) belongs to S.

Malaysian Journal of Mathematical Sciences

Assuming that β and γ are real in Theorem 2.3 with $\beta = \gamma$ gives what follows:

Corollary 2.4. 5Let $g \in S$ with $g(z) \neq 0$ for 0 < |z| < 1. If $\alpha \in \mathbb{C}$ with $0 < |\alpha| < 1/4$ and

$$\gamma \in \left[\min\left\{1, \frac{4\sqrt{|\alpha|}}{\sqrt{1-4|\alpha|}}\right\}, 1\right] \bigcup \left[\max\left\{1, \frac{16|\alpha|}{1-4|\alpha|}\right\}, \infty\right),$$

then the function $H_{\alpha,\gamma,\gamma}(g)$ belongs to \mathcal{S} .

Proof. From conditions (26) and (27), we have for $\gamma \in (0,1]$,

$$\gamma^2 \ge \frac{16|\alpha|}{1-4|\alpha|}$$

and hence the domain of γ is reduced to

$$\gamma \in \left[\min\left\{1, \frac{4\sqrt{|\alpha|}}{\sqrt{1-4|\alpha|}}\right\}, 1\right].$$

For $\gamma \in [1, \infty)$, condition (27) yields

$$\gamma \in \left[\max\left\{1, \frac{16|\alpha|}{1-4|\alpha|}\right\}, \infty\right).$$

Thus the result follows by applying Theorem 2.3 for the choice β and γ are real with $\beta = \gamma$.

ACKNOWLEDGEMENT

This work is funded by the Deanship of Scientific Research in Zarqa University, Jordan.

REFERENCES

Breaz, D. and Breaz, N. (2003). Operatori integrali pe clasa T₂. Proceedings of the Sixth Annual Conference of the Romanian Society of Mathematical Sciences, Sibiu, ISBN 973-651-634-2, 348-352.

Malaysian Journal of Mathematical Sciences

- Breaz, D. and Breaz, N. (2004). Univalence conditions for certain integral operators on $S(\alpha)$ -class. *Libertas Mathematica*, ARA,USA, ISSN 0278-5307, tomus XXIV, 211-214.
- Kim, I. J. and Merkes, E. P. (1972). On an integral of powers of a spiral-like function. *Kyungpook Mathematical Journal*. **12**(2): 249-253.
- Ozaki, S. and Nunokawa, M. (1972). The Schwarzian derivative and univalent functions. *Proceeding of American Mathematical Society*. **33**: 392-394.
- Pascu, N. N. (1987). An improvement of Becker's univalence criterion. Proceedings of the Commemorative Session Simion Stoilow. Brasov: 43-48.
- Pescar, V. (2006). On the univalence of some integral operators. *General Mathematics*. **14**: 77-84.
- Pescar, V. (2005). On the univalence of some integral operators. *Journal of the Indian Academy of Mathematics*. 27: 239-243.
- Pescar, V. (2003). Certain sufficient conditions for univalence. *Hokkaido Mathematical Journal*. **32**: 451-455.
- Pescar, V. (2006A). Univalence conditions for certain integral operators. Journal of Inequalities in Pure and Applied Mathematics. **7**(4): Article 147.